ФГБНУ «ФИЦ оригинальных и перспективных биомедицинских и фармацевтических технологий»

Сравнительное изучение фармакологических свойств дипептидных миметиков 4-й петли NGF крысы — ГК-2 и человека — ГК-2 (h) *in vitro*.

Антипова Т.А., Николаев С.В., Логвинов И.О.

лаборатория молекулярной фармакологии

antipova_ta@academpharm.ru nikolaev_sv@academpharm.ru logvinov io@academpharm.ru $\Gamma K-2$ ([Suc-Glu-Lys-NH-(CH2)₃]₂)

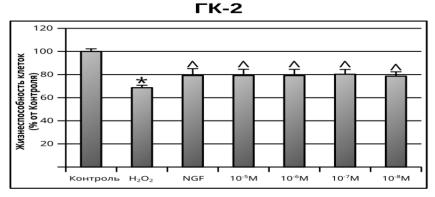
 $\Gamma K-2(h)$ ([Suc-Gly-Lys-NH(CH2)₃]₂)

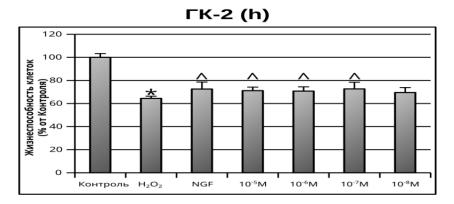
Известно, что в ряде случаев клинические испытания новых потенциальных лечебных препаратов не заканчиваются успехом, возможно, из-за различия строения эндогенных белков человека и животных. В связи с тем, что аминокислотные последовательности 4 петли NGF человека и крысы различаются, данное исследование направлено на изучение фармакологических свойств сравнительное дипептидов ГК-2 и ГК-2(h) на модели окислительного стресса HT-22 и 6клеток гиппокампа В культурах мыши гидроксидофаминовой (6-ОНДА) токсичности в культуре нейробластомы человека SH-SY5Y. ГК-2 ([Suc-Glu-Lys-NH- $(CH_2)_3]_2$) сконструирован и синтезирован в отделе химии ФИЦ на основе бета-изгиба 4 петли NGF крысы, ГК-2(h) ([Suc-Gly-Lys-NH-(CH₂)₃]₂) – NGF человека.

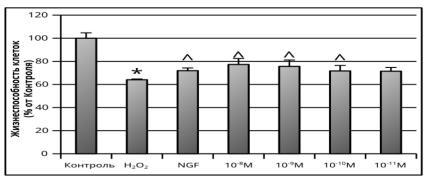
4-петля

Seredenin S.B., Gudasheva T.A. Dipeptide mimetics of NGF and BDNF neurotrophins: Russian patent № 2410392. WO/2010/093284

Материалы и методы

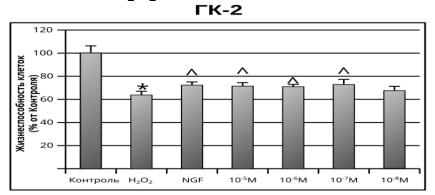

Эксперименты проводились на культуре иммортализованных клеток гиппокампа мышей линии HT-22 и на клетках нейробластомы человека линии SH-SY5Y. Ранее нами было показано, что ГК-2 обладал нейропротекторным действием как на первичной культуре клеток гиппокампа крысы, так и на мышиных гиппокампальных клетках линии HT-22. Для моделирования окислительного стресса использовали перекись водорода в конечной концентрации 1,5 мМ. Клетки HT-22 с H_2O_2 инкубировали 30 мин. Далее культуральную среду, содержавшую H_2O_2 , заменяли на нормальную и через 4 ч определяли жизнеспособность клеток.

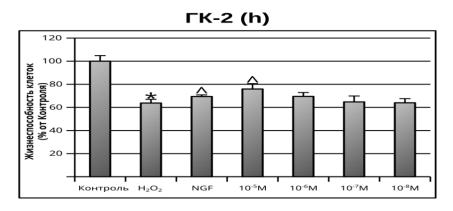

Для индукции токсического эффекта 6-OHDA в культуру клеток линии SH-SY5Y его вносили в конечной концентрации 100 мкМ и инкубировали в течение 24 ч, после чего меняли среду на нормальную и определяли жизнеспособность клеток через 24 ч. Для определения жизнеспособности клеток использовали МТТ-тест (Sigma).


ГК-2 или ГК-2(h) или NGF ($\approx 10^{-9}$ M), который использовали в качестве положительного контроля, вносили за 24 ч до повреждения (профилактическое внесение) или сразу после отмывания (терапевтическое внесение) перекиси водорода или 6-OHDA в конечных концентрациях 10^{-5} M – 10^{-11} M.

Нейропротекторное действие ГК-2 и ГК-2(h) на модели окислительного стресса в культуре клеток гиппокампа линии HT-22. Результаты MTT-теста.

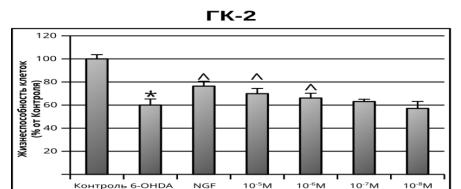
Внесение за 24 ч до H_2O_2

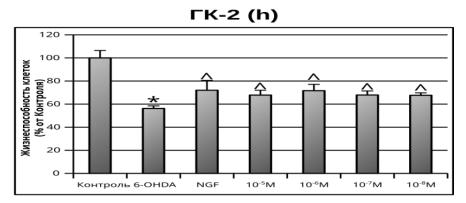



Статистически значимые отличия (р ≤ 0,05, n=16, критерий Краскела-Уоллиса с последующим межгрупповым попарным сравнением по Данну)

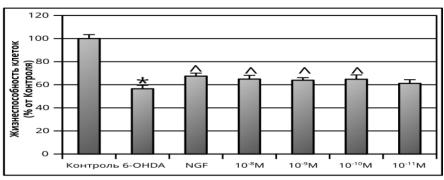
* — относительно контроля,

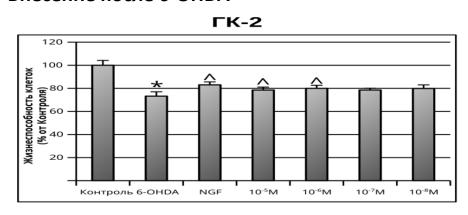
^ — относительно Н₂О₂

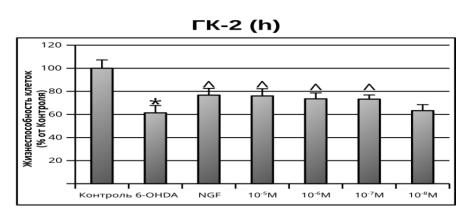

Внесение после H_2O_2



Цитопротекторное действие ГК-2 и ГК-2(h) на клеточной модели болезни Паркинсона в культуре клеток нейробастомы человека линии SH-SY5Y. Результаты МТТ-теста.


Внесение за 24 ч до 6-OHDA




Статистически значимые отличия (р ≤ 0,05, n=16, критерий Краскела-Уоллиса с последующим межгрупповым попарным сравнением по Данну)

*- относительно контроля,
^ – относительно 6-ОНDA

Внесение после 6-OHDA

Обсуждение и выводы

 Γ K-2(h) защищал нейроны HT-22 от окислительного стресса в концентрациях 10^{-5} - 10^{-7} М при внесении за 24 ч до H_2O_2 и в концентрации 10^{-5} М после повреждающего агента. Нейропротекторный эффект ГК-2 проявлялся при профилактическом внесении в интервале концентраций $10^{-5}M - 10^{-10}M$, а при терапевтическом внесении в концентрациях $10^{-5}M - 10^{-7}M$. ГК-2(h) защищал клетки SH-SY5Y от 6-ОНДА при внесении за 24ч до токсина в интервале концентраций от 10^{-5} до 10^{-9} М, а после повреждения клеток концентрациях 10^{-5} М — 10^{-7} М. ГК-2 также обладал цитопротекторным действием на клетках человека SH-SY5Y, но в концентрациях 10^{-5} — 10^{-6} M в обеих схемах эксперимента. Таким образом, оба миметика ГК-2 и ГК-2(h) обладают цитопротекторной активностью на клеточных культурах как грызунов, так и человека. Однако ГК-2 более активен на культуре клеток мыши, в то время как ГК-2(h) эффективнее защищает клетки человека. Полученные данные определяют целесообразность дальнейших исследований.

Исследование выполнено за счет гранта РНФ № 24-25-00072, https://rscf.ru/project/24-25-00072